Corrigenda

Chemistry of Pentakis(trimethyl phosphite)iron(0), $\left[\mathrm{Fe}\left\{\mathbf{P}(\mathrm{OMe})_{3}\right\}_{5}\right]$

By E. L. Muetterties and J. W. Rathre

J.C.S. Chem. Comm., 1974, 850.

On p. 851 , l.h.s. line 32 should read: to have an AB_{4} spectrum.

X-Ray Structures of $\left[\mathrm{Cr}_{8}(\mathrm{CO})_{6}\left(\mathrm{AsMe}_{9}\right]\right.$ and $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{6}\left(\mathrm{AsPr}^{\mathrm{n}}\right)_{8}\right]$: the Stabilisation of an As_{9} ring and As_{8} Chain by Co-ordination
By Patricia S. Elmes, Bryan M. Gatehouse, Douglas J. Lloyd, and Bruce O. West
J.C.S. Chem. Comm., 1974, 953.

On p. 953, footnote \dagger, formula should read $\left[\mathrm{M}(\mathrm{CO})_{4}(\mathrm{AsMe})_{5}\right]_{2}$.

Rapid Efficient Route to 3-Hydroxy-o-phenylenediamine Derivatives and Derived Benzoxazolines
By Francesco Paolo Colonna, Giuliana Pitacco, and Ennio Valentin
J.C.S. Chem. Comm., 1975, 71.

On p. 71, l.h.s., scheme, substituents should read: $\mathrm{b}: \mathrm{R}^{\mathbf{1}}=\mathrm{H} ; \mathrm{R}^{\mathbf{2}}=$ pyrrolidino, $\mathrm{d}: \mathrm{R}^{\mathbf{1}}=\mathrm{Me} ; \mathrm{R}^{\mathbf{2}}=$ pyrrolidino.

Fast Catalysis of a Hydrogen Exchange Reaction at Low Temperatures by Gold

By David I. Bradshaw, Richard B. Moyes, and Peter B. Wells
J.C.S. Chem. Comm., 1975, 137.
p. 137. The statement contained in the last sentence of the second paragraph of the main text is in error. Such exchange has been reported by V. A. Ponomarenko, G. V. Odabashyan, and A. D. Petrov, Dokl. Akad. Nauk., S.S.S.R., 1959, 131, 321, and by L. H. Sommer, J. E. Lyons, and H. Fujimoto, J. Amer. Chem. Soc., 1969, 91, 7051.

Diphenyl Ketimine Derivatives as a Probe for Group IV p $\boldsymbol{\pi}$-d $\boldsymbol{\pi}$ Bonding: The Structures of $\mathbf{M}\left(\mathbf{N C P h}_{\mathbf{2}}\right)_{\mathbf{4}}$ ($\mathbf{M}=\mathbf{S i}, \mathbf{G e}, \mathbf{S n}$)
By Nathaniel W. Alcock, Melanie Pierce-Butler, Gerald R. Willey, and Kenneth Wade
J.C.S. Chem. Comm., 1975, 183.

On p. 184, Crystal data, molecular formulae should read: $\mathrm{SiC}_{52} \mathrm{~N}_{40} \mathrm{~N}_{4}, \mathrm{GeC}_{52} \mathrm{H}_{40} \mathrm{~N}_{4}$, and $\mathrm{SnC}_{52} \mathrm{H}_{40} \mathrm{~N}_{4}$.

Synthesis and Configuration at C-15 of the Epimeric 5α-Lanost-8-en-3 β,15-diols
By Geoffrey F. Gibbons and Kalpana Ramananda
J.C.S. Chem. Comm., 1975, 213.

On p. 213, r.h.s., caption to formulae should read:

(1)	$\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2} \mathrm{R}^{3}=\mathrm{O}$	(8)
(2)	$\mathrm{R}^{1}=\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}=\mathrm{R}^{3}=\mathrm{H}$	$\mathrm{R}^{3}=\mathrm{OH}$
(3)	$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{OH}$	(9)
$\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$		
(4)	$\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$	(10)
$\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{H}$		
(5)	$\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{H}$	(11)
$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}, \mathrm{R}^{3}=\mathrm{H}$		
(6)	$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ac}, \mathrm{R}^{3}=\mathrm{H}$	
(7)	$\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{H}$	

Resonance Raman Spectrum of the Mixed-valence Compound $\mathbf{C s}_{\mathbf{2}} \mathbf{S b C l}_{\mathbf{6}}$

By Robin J. H. Clark and William R. Trumble
J.C.S. Chem. Comm., 1975, 318.

On p. 318, r.h.s., caption to Figure should read:
Figure. Plots of the intensity ratios: \qquad ---- \square $I\left(2 v_{1}\right) / I\left(\nu_{1}\right) ; \bigcirc----\bigcirc, I\left(3 v_{1}\right) / I\left(\nu_{1}\right) ;$ and $\nabla----\nabla, I\left(\nu_{1}+\right.$ $\left.\nu_{\mathrm{L}}\right) / I\left(\nu_{1}\right)$ for $\mathrm{Cs}_{2} \mathrm{SbCl}_{6}$, where ν_{1} is the $a_{1 g}$ fundamental of the constituent SbCl_{6} ion and ν_{L} is a lattice mode. Absorbance data (as measured by a difference diffuse reflectance spectrum) are taken from ref. 5 (solid line; arbitrary units).

